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FOREWORD 

This report was prepared by the Fuels and Lubricants Branch, Nonmetallic 

Materials Laboratory, Directorate of Materials and Processes, Aeronautical Systems 

Division with Jon Lee as project engineer. The work reported herein was initiated under 

Project No. 7340, "Nonmetallic and Composite Materials", Task No. 734008, "Power 

Transmission Heat Transfer Fluids". 

This report covers the partial work done during the period from January 1963 

to March 1963. 
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ABSTRACT 

For a bounded turbulent flow, the von Kantian's eddy- 

viscosity based on the similarity hypothesis yields a well 

confirmed asymptotic logarithmic velocity distribution for a 

large Reynolds number.  By solving exactly the equation of motion 

arising from the introduction of the von Karman's eddy viscosity, 

the notorious sources of inconsistency as (i) the discontinuity 

of velocity derivative at the matching point, and (ii) the non- 

vanishing velocity gradient at the enter of a channel, can be 

removed entirely.  Yet the exact solution can be made 

sufficiently close to the asymptotic logarithmic profile for all 

other ranges by an arbitrary choice of the parameter separating 

the conventional two regions in a turbulent flow channel. 

R. L! ADAMCZAKJ 
Asst Chief, F/e1 s £■ Lubricants Eranch 
Nonraetallic Materials Laboratory 
Directorate of Materials & Processes 

* Non-netallic Materials Laboratory, Directorate of Materials & Processes, 
Aeronautical Systems Division, tfright-Patterbon Air Force Base, Dayton, Ohio 

#* Submitted to A.I.A.A. Journal 
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Introduction 

For a long time the notorious difficulty of turbulent problems has 

well been recognized. As an example, heretofore, a rational approach to 

the description of velocity distribution in a simple flow geometry, such 

as channel or tube flow, has not yet been realized. The most fruitful and 

practical endeavour in this direction has been the phenomenological approach 

for which the analogy of turbulent shear stress to the gradient-type mechanism 

plays an essential role. Thus, the turbulent flow problems are usually ' 

reduced to the finding of plausible expressions for the eddy viscosity which 

depends on the location in the flow region in contrast to the molecular 

viscosity. 
(3)        do) 

At present,the eddy viscosities proposed by Deissler   and von Karman 

seem to be more popular than others which have the disadvantage of being 
(7) 

less sophiscated or unprofitably complicated.   The former predicts the 

velocity distribution near the wall. It has the virtue of covering the 

so-called laminar sublayer and buffer liyer continuously. The latter, 

which is valid away from the wall, predicts the well-known logarithmic 

velocity profile in the turbulent core region. The logarithmic nature of 

velocity distribution has been validated by experiment and dimensional 

reasoning, and it is believed that such a function should be an asymptotic 

profile for a large Reynolds number-thus is called the universal velocity 

distribution. 

It would be an amiss not to mention that, without evoking to the 
(8) 

phenomenological approximation, Pai   has obtained a semi-empirical polynomi- 

al for the velocity distribution which is applicable across the entire 
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Channel width. It requires one disposable constant evaluated at each 

Reynolds number, and the generalization and inherent limitation have 
(2) 

recently been studied by Brodkey. 

Apart from its usability for a wide range of Reynolds numbers,the 

principal sources of inconsistency of the forementioned phenomenological 

approximation are that the two velocity profiles meet abruptly at the 

intersection and the velocity gradient at the center of a channel does 

not vanish. These are physically intolerable because the velocity distribution 

must be not only continuous but also smooth, and the flow pattern must be 

symmetric and smooth at the center. The direct consequence of non- 

vanishing velocity gradient at the center is that the maximum velocity (occuring 

at the center) can not be predicted precisely. (It must be noted that the 

Pai's method necessitates the knowledge of maximum velocity). Therefore 

the piece-meal velocity distributions can not provide important information 

on the ratio of average to maximum velocities. 

It has been found that the above two objections can be removed 

totally by considering the exact equation of motion due to von Xarman's 

eddy viscosity. It is a second order differential, therefore, one can 

impose only two conditions of continuity and smoothness at the intersection, 

if one so desires. However, fortunately, the other desideratum of zero- 

gr.ndient atthe center can automatically be satisfied on account of the 

singularity at the center being a nodal point. 

In retrospect, at high Reynolds number it is clear that the logarithmic 

profile prevalent in most of the flow region can also be observed by 

solving the exact differential equation, as one anticipates. Furthermore, 

the approximation of neglecting the molecular viscosity term prior to 
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solution does not only deprive the possibility of meeting the rational 

boundary conditions, but also forces one to assume an unnatural infinite 

velocity gradient at the wall. 

S+atenent of Problem 

For a stationary channel flow between two parallel flat plates, 

the averaged equation of motion takes the following form, 

(i)     _ 3P   +*Txy    = o. 
a*  ay 

where x is in the direction of mean flow and y is perpendicular to x 

originating from the wall as shown in Figure 1, and Txy denotes the total 

shear stress. 

Equation 1 can be expressed in a more obvious form by integrating 

once in y with the boundary condition, Txy = 0 at y=yc; 

(2)   T^ = rw ( 1 -y/yc) 

For the laminar problem,the shear stress can simply by expressed by 

the Newton's law of viscosity, i.e., Txy =^udu/dy, in which a, depends 

explicitly on the nature of the fluid. However, for turbulent flow, one 

must take an account of the Reynolds shear stress arising from the temporal 

average of fluctuating velocity components. Since the exact form of 

Reynolds (turbulent) shear stress can not be deduced entirely from the 

theory itself, the only alternative must necessarily be based on a 

heuristic empiricism. This is undoubtedly the difficulty and weakness 

of turbulent flow problem, but much success has been made by the 

phenomenological approach in which the Reynolds shear stress is assumed 
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to be describable by a gradient-type mechanism as 

(3) 7xy = (jU+ji)  du/dy 

in which u, represents the eddy viscosity._ 

At present the nnicably accepted eddy viscosities, to which we 

s hall restrict ourselves here, nre; 
(3) 

Deissler's formula near the wall, 

(4) $=fl/f>=    n2uy( 1 - exp(-n2uy/i,))) 

(10) 
von Karman's formula away from the wall, 

(du/dy)3 

(5) T> = ß/f = K 
(d2u/dy2): 

,and 

where n and fC  are disposable constants. 

A set of differential equations can be obtained by equating equation 2 

and 3,if one further substitutes equations 4 and 5,respectively,for the 

different ranges. By introducing the usual dimensionless coordinates, 

u+ = u/u and y+= yu'A? ,where u denotes the wall-friction velocity, 

we finally obtain: 

du" 
(6) 

dyT 

( i - y+/y+J 

1 + n2uV"(l- exp(- n2u+y+)) 
for 0 ^ y £ y£ 
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and 

(?)   jf£- =   - K   (du+/dy*)2 fory+Ä y+ 

dy ̂2 [d - y+/y+c) - du
+/dy+] 0.5 

where yx, separates the ranges of equation 6  and ?, and can be thought 

of as third constant (e. g., Deissler suggested yL -26).     In obtaining 

equation 7, a priori assumptions that du /dy+ - 0 and d u /dy 2^ 0 , 

are tacitly evoked. 

It nust be observed that the differential equation 6, resulting 

fron the Deissler's contribution, has the merit of replacing the two con- 

ventional piece meal velocities  for the laminar and buffer layer near 

the wall. Thus,with this the description of turbulent velocity distri- 

bution still contains three empirical constants,the complete elimination 

of which does not seem so promising within the near future. 

Classic"! Solution 

Both equations 6 and 7 are very complicated and non-linear,thus they 

can not be solved analytically unless some approximations are introduced. 

Within the proposed range of y  - 26,by approximating (l - y /y* ) = 1, 

Deissler obtained the solution of equation 8 by numerical iteration, 

(8)  u+ 
ry+ dy+ 

lQ      1 + n?-uV(l- exp(-n2u+y+)) 

(8) 
and presented the solution in a graphical form   . 
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For equation 7 which is supposed to be valid at distant from the wall, 

the effect of molecular viscosity can be considered inferior to the eddy 
(l) 

viscosity . Following von Karman,xre can also assume the constant shear 

stress near the wall for further simplification (this is indeed contra- 

dictory to the previous assumption,but a generally accepted practice as 

in the case of Prandtl mixing length theory). Had these approximation 

been introduced in the course of deriving equation 7»one should instead 

have obtained the following equation, 

(9) d2u+/d/2 = _ ^  (du+/dy
+)2 for y£ * / 

Solution of equation 9 is a familiar logarithmic velocity distribution 

as; 

1       + 
(10) u+ - ut   =   ln(y+/yL ) 

K 

where UL denotes u+ at y* . 

The actual experimental data seem to confirm the validity of equations 

8 and 10.provided the flow is completely turbulent,independent of Reynolds 
(3) 

number .  It might be of some interest in this connexion to note the 
(9) 

transitional velocity distributions obtained by Schlinger et al. . 

One virtue of the universal velocity distribution is that it tends to 

smooth out the irregularities on account of its semi-log representation. 

On the other hand,the obvious objection and inconsistency are the abrupt 

change in the curvature of velocity profile at yL = 26 and the non-vanishing 
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velocity gradient at the center of a channel. At this point,we should 

perhaps be content with the presence of three disposable constants as 

long as they are unique,and almost independent of Reynolds number. 

Yet,whatever the artificial division of the flow region might be,we would 

like to find a continuous velocity distribution(at least,up to first 

derivative),and to satisfy the physical symmetry condition at the center. 

Ration.-;! Solution 

Equation 6  is a well-behaving regular first order differential equation, 

even though it does not allow us to obtain a solution in a closed form, 

and can be solved numerically with the initial condition,u =0 at y =0. 

As the logarithmic profile is an asymptotic solution for a large yc(or 

Reynolds number),we can also expect that the exact solution of equation 

7 should exhibit such a functional behaviour with the possible exception 

at the end points. 

+    + 
Let us denote the solution of equations 6 and 7 by u^ and u2 »respec- 

tively, and also write equation 7 as a corresponding system of the first 

order differential equations,i.e.; 

(11) 
du2    _    p 

dy 

dP                      - K P2 

dy+            [<i-y7y+)- -P]0-5 
(12) 

We wish to satisfy the following boundary conditions; 
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(i)   iLp = u-i  at y = yL (continuity) 

(ii)   P = du-jy dy   at y = yL (smoothness) 

(iii)  p = 0   at y= yc (symmetry) 

Usually the system of two first order differential equations can satisfy 

only two of the above conditions;therefore,the possibility of satisfying 

the third condition must be examined carefully. 

As discussed in the appendix,the end point yc is a nodal point of 

the singular differential equation 12,therefore,the family of solutions 

P with different initial values at y, must necessarily terminate as P=0 

+ 
at ^ . In other words,the preservation of the molecular viscosity 

term in equation 12 (represented by -P in the denominator) does allow 

us to remove the physical inconsistency associated with the classical 

approximation solution by meeting all three desired boundary conditions. 

In contrast to the classical solution,the present exact analysis contains 
* 

y as a parameter (cf.ref.(4,5)),and it can be shown that it is directly 

related to the Reynolds number by 2 x y x u  . It would be of some 

interest to know that the analytical solution of equation 7 in the absence 

of only the molecular viscosity also contains a lagarithmic function, 

and the corresponding velocity gradient at the center is proportional 

to l/y_,which vanishes for a large value of y • 

* The author is indebted to Professor Robert S.Brodkey for pointing the 
references to his attention. 
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Results and Discussion 

Equation 6 was integrated with the initial value of u = 0 at y+= 0 

and continued until y+= y£ .Then for y+ * y£,the set of equations 11 

and 12 was integrated with the initial conditions, u£ = \xt   and du£/dy+ 

= dux/dy
+ at y =yL . The range of y+can not be extended to the singular 

+ . 
point;therefore,the neighbourhood of y was always deleted and later the c 

+   + 
value of u at yQ  was estimated by the numerical integration of P with 

P=0 at yc(using the trapezoidal rule). 

In order to obtain a solution which can be compared with the existing 

theory,we need to assign a value to the three parameters, n , % ,and yt. 

Even though the problem was originally formulated for the channel flow, 

it has been the usual practice in the past to correlate the tube flow 

data with the same universal logarithmic velocity distribution. Therefore, 

in conformity with the spirit of simplification(see,page 161 of ref.(l)), 

we shall attempt to follow the two familiar velocity distributions as; 

Equation 8 with n = 0.124 0 - y+ £ 26 

U+ " ^ * wT ln (y+/26)        26 * y* 

Case II 

+   + + u=y 0zy->-z5 

u+ = - 3.05 + In y 5 * y
+ * 30 

+        1     + 30 ^ y+ 

U = 5-5 +— lny 

* All the numerical integrations of the differential equation was 
performed by the fourth order Runge-Kutta method with four-digit accuracy. 
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The velocity distributions corresponding to the above two cases are 

[dotted in Figures 2 and 3 as references. For either case,the value of 

n = 0.12U associated with eauation 6 yields a fairly impeccable and con- 
(3) 

servative profile for small y ,as; has already been found by Deissler . 

+ 
For a large y , in order to preserve the same slopes in a semi-log.plot, 

the values of K  =0.36 and 0.U must be used in equation 12 for the res- 

pective cases. However,it has been found that somewhat different values 

for matching the two regions should be adopted;namely,they are yt  = 15 

and 23 for the cases I and II,respectively. The arbitrary choice of the 

values for y^ was made so that the exact velocity distribution does not 

overshoot the asymptotic profile for most of the region. 

For each case,several exact velocity distributions corresponding to 

the different values of the parameter,y ,are compared with the asymptotic 

profile as shown in Figures 2 and.3 . With the exception of y* = 100 

(corresponding to Reynolds number of about 2000,for which the theory is 

not valid),the exact distributions follow the asymptotic profile closely 

with the desiderata on the velocity profile being faithfully satisfied. 

The exact distributions deviate considerably from the asymptotic one at 

the center as has been observed in the actual experiment;however,the 

variance is well within the spread of experimental data. 

The ratio of the maximum to average velocities in a tube can be obtained 

from the computed velocity distribution,and the results are compared with 

the smoothed line drawn through the data of Nikuradse,and Stanton and 
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Parmell (taken from page Ui9  of ref.(7)),as shown in Figure lu The velo- 

city ratios for the two cases do not agree very closely either with each 

other or with the experimentally smoothed curve( average deviation of the 

experimental data is ± 1 %).    The former indicates that the velocity ratio 

is quite sensitive to the actual shape of the velocity distribution. 

The latter suggests one to believe that the actual experimental data at 

large were somewhat different from the asymptotic profiles,provided a 

sufficient care has been exercised in obtaining the average velocity. 

Of course,for small Reynolds numbers,that is for Re<500,the disagreement 

becomes acute,for which the validity of the present theory must be reviewed. 

Conclusions 

For a large Reynolds number,the exact solution of the equation of motion 

based on the von Karman's eddy viscosity approaches the traditional 

asymptotic logarithmic profile. In addition,the physical inconsistencies 

manifested by the abrupt velocity change at the matching point and the 

non-vanishing velocity gradient at the center of a channel were removed 

in toto. In view of the insignificant discrepency existing between the 

exact and asymptotic velocity distributions on one hand,and the consider- 

able amount of a computational labour involved in obtaining the exact 

ones on the other hand,it is fair to say that the findings of the present 

work may simply be of academic interest for the channel flow. However, 

a significant error would be committed by using the logarithmic velocity 

profile,when one considers a flow of thin film over a plate as in the case 

of turbulent film condensation and two-phase annular flow problems. 
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APPENDIX 1 

Behaviour of equation 12 

The imposing of the third boundary condition,i.e., P = 0 at y =y , 
.(6) 

us now write equation 12 in a more convenient form as, 

makes equation 12 singular at y  . With no loss of generality,let 

dW       _ W2 

(A-l)     = ,       =• (W=0 at Z=l) 
dZ   /( 1 - Z ) - w 

Further by letting X = 1 - Z,we can bring the singular point into the 

origin, 

dW     W2 

(A"2)   IT" JT7Ü (W"° at X-0) 

For the sake of convenience,if one introduces a new variable as rf =  X - W, 

we then have, 

(A-3)    —" =  r- " X (ff«0 at W-0) 
dW     W2 

Solution of equation A-3 can not be obtained in a closed form by the 

elementary functions;however,a considerable amount of insight for the 

singular behaviour can be obtained from a simple isocline study. 

As usual,equation A-3 should hold for a certain fixed slope,say,K-, : 

K1 = /L - 1 (A-U) 
W2 

* The analytical investigation of the singular behaviour will be presented 
elsewhere. 
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Therefore,the isocline equation becomes, 

(A-*) 6    = ( K± + i  ) </ 

We are interested only in the first quadrant, / ^ 0 and W * 0,and some 

of the solutions are plotted in Figure $.'   The most important conclusion 

is that the origin is a nodal point into which a family of solutions 

should converge. 

The essence of the nodal behaviour of equation A-3 can further be 

elucidated by examining an equivalent linear problem,for which an analyt- 

ical solution is available,as followsj 

(A-6)    _ir_ =   - 1 (^=o at W=0) 
dW   * V 

For this case,the isocline equations are a family of straight lines, 

(A-7)     4 = ( K2 + i ) W 

and the solutions having the origin as a nodal point can be expressed as, 

(A-8)      i    = W ln(C/W) 

where C is a parameter characterizing the family of curves as shown in 

Figure 6. 
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/V 
Notations 

C integration constant 

K]_,Xp isocline constants 

P du+/dy+ 

p mean pressure 

Re Reynolds number 

u mean flow velocity component 

u*' wall-friction velocity ( jTw/p ) 

u dimensionless velocity coordinate (u/u*) 

u-j_ ,u„. soultion of equations 6 and 7,respectively 

+        + .  + uL u at yL 

W variable defined in equation A-l 

X 1 - Z ,see equation A-2 

x ,y coordinate system 

y dimensionless distance coordinate (yu /i> ) 

y channel width 

y^ parameter separating equations 6 and 7 

Z variable defined in equation A-l 

Greeks 

K von Karman's constant 

JJL molecular viscosity 

t? kinematic viscosity (jl/f ) 

P fluid density 

t xy total shear stress 

$ X - W,see equation A-3 
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Subscripts 

av average across the channel width 

max maximum 

w wall,i.e.,at y = 0 

overscore 

■<—» ' turbulent property 
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FIGURE   6.    PLOT  OF   EQUATION A-8 
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